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SUMMARY

High-throughput technology is gradually becoming a powerful tool for routine research in rice. Interpreta-

tion of biological significance from the huge amount of data is a critical but non-trivial task, especially for

rice, for which gene annotations rely heavily on sequence similarity rather than direct experimental evi-

dence. Here we describe the annotation platform for comprehensive annotation of rice multi-omics data

(CARMO), which provides multiple web-based analysis tools for in-depth data mining and visualization. The

central idea involves systematic integration of 1819 samples from omics studies and diverse sources of func-

tional evidence (15 401 terms), which are further organized into gene sets and higher-level gene modules. In

this way, the high-throughput data may easily be compared across studies and platforms, and integration

of multiple types of evidence allows biological interpretation from the level of gene functional modules with

high confidence. In addition, the functions and pathways for thousands of genes lacking description or vali-

dation may be deduced based on concerted expression of genes within the constructed co-expression net-

works or gene modules. Overall, CARMO provides comprehensive annotations for transcriptomic datasets,

epi-genomic modification sites, single nucleotide polymorphisms identified from genome re-sequencing,

and the large gene lists derived from these omics studies. Well-organized results, as well as multiple tools

for interactive visualization, are available through a user-friendly web interface. Finally, we illustrate how

CARMO enables biological insights using four examples, demonstrating that CARMO is a highly useful

resource for intensive data mining and hypothesis generation based on rice multi-omics data. CARMO is

freely available online (http://bioinfo.sibs.ac.cn/carmo).

Keywords: CARMO, Oryza sativa, rice omics data, functional integration, gene annotation, gene module,

technical advance.

INTRODUCTION

Oryza sativa (rice) is not only a major food crop but also a

valuable model plant for research. The rapid development

of transcriptomic and (epi)genomic technologies has

greatly promoted our understanding of the function of

genes on a genome-wide scale, but this poses a major

challenge with respect to data mining, which depends

highly on reliable functional annotation of genes. However,

99.5% of gene ontology (GO) terms for rice in the major

functional annotation resources (Ware et al., 2002; Kawa-

hara et al., 2013; Sakai et al., 2013) are deduced on the

basis of sequence homology with other species, and thus

are not sufficiently reliable. Given that current tools for

functional interpretation of genes in rice are largely depen-

dent on terms of this sort (Du et al., 2010; Kawahara et al.,

2013; Sakai et al., 2013; Yi et al., 2013), incorporating direct

experimental evidence from rice to develop more reliable

tools for functional annotation of genes is an urgent need.

The huge amount of public rice omics data provides a

good resource for functional annotation of rice genes. For

example, gene sets derived from differential expression

analysis represent genes with a common response to par-

ticular perturbation or treatment, while genes affected by a

set of single nucleotide polymorphisms (SNPs) associated

with a certein trait identified from genome-wide associa-
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tion studies (GWAS) are likely to be co-regulators affecting

the trait under study. However, the fact that these data are

generated by different studies and different platforms,

which may not be readily comparable, poses significant

challenges for data integration. Furthermore, combining

information extracted from omics data with other types of

functional annotations is also a non-trivial task.

Various methods have been proposed for integration of

different sources of information (Segal et al., 2004; Subra-

manian et al., 2005; Huang et al., 2009). These focus on

compilation of gene sets from diverse sources of annota-

tion, including ontologies, pathways, domains, expression

information, etc. Subramanian et al. (2005) described gene

set enrichment analysis as a powerful knowledge-based

approach for interpreting genome-wide expression profiles.

However, different gene sets are tested individually in the

above method, and interplay between different gene sets is

not considered. Thus, users are presented with a collection

of enriched functional terms without a description of the

relationship between them. Huang et al. (2009) attempted to

address this issue via clustering of over-represented terms

based on the number of genes they share, such that closely

related terms are organized into groups. In addition, Segal

et al. (2004) proposed the idea of module networks to orga-

nize gene sets into higher-level modules based on their

expression behavior in cancer tissues, and constructed 456

gene modules that work in concert to perform related func-

tions in cancer; these modules have been widely used in

cancer diagnostic, prognostic and therapeutic studies

(Segal et al., 2005; Wong et al., 2008a,b). Data-driven con-

struction of gene networks based on expression information

has been described for rice (Lee et al., 2011), but combina-

tion of functional information and high-throughput data for

interpretation of gene function is still insufficient in rice stu-

dies, thus restricting hypothesis-driven research.

Here, we describe comprehensive annotation of rice

multi-omics data (CARMO), an integrated annotation plat-

form for functional exploration of rice multi-omics data.

The current release of the rice reference genome (IR-

GSP 1.0; http://rapdb.dna.affrc.go.jp/download/irgsp1.html)

is used, and gene models are based on Michigan State

University’s Rice Genome Annotation Project (http://

rice.plantbiology.msu.edu/) and the Rice Annotation Pro-

ject Database (RAP-DB; http://rapdb.dna.affrc.go.jp/). We

systematically collected and processed public high-

throughput datasets, and curated genomics, transcripto-

mics, ontology, pathway and protein domain information

into functional gene sets, modules and a co-expression/co-

function network. CARMO provides well-organized results

for data comparison and annotation, and has a user-

friendly web platform and interactive interface to allow

comprehensive exploration by users. We illustrate the fea-

tures of CARMO using four examples, including DNA

methylation-related functional modules, interplay between

hormones on a genome-wide scale, the relationship

between genome-wide chromatin accessibility and tissue-

specific gene expression, and the functional impact of

yield-related SNPs identified by GWAS. These examples

demonstrate the utility of CARMO as an important and

easy-to-use resource for intensive functional study in rice.

RESULTS

Data collection and integration

We started with extensive collection of two main sources

of information from rice (Table S1) for further integration.

First, 10 584 functional gene sets, mostly predicted based

on sequence homology, were collected, representing

genes belonging to the same functional category or path-

way, or sharing the same domain (Table S1). Then, 1819

samples from transcriptomic and genomic studies were

collected (Table S1B). Figure 1 summarizes the workflow

for how this information is integrated, and the diamond-

shaped boxes represent the processed data used in CAR-

MO as introduced below.

Gene sets with differential expression in pairwise compari-

sons. Gene sets with differential expression represent

genes with a common response to a particular perturbation

or treatment. For 1776 samples in 119 transcriptomic stud-

ies (Table S1C,D), all available pairwise sample compari-

sons in the same study were generated. Comparisons

across studies were avoided in case of confounding batch

effects. After removal of samples with too few differentially

expressed genes, we obtained 4589 differentially expressed

gene sets (Figure 1a). Methods S1 provides details of the

methods.

Genome-wide expression profile across tissues. To char-

acterize the expression profile of genes across tissues, 27

RNA-seq samples from 13 tissues were collected (Table

S1E). We calculated the fragments per kilobase of exon per

million fragments mapped (FPKM) for each gene in each

sample (Trapnell et al., 2012) (Figure 1a).

Co-expression network and gene sets derived from the net-

work. Genes with concerted expression generally work in

coordination (Stuart et al., 2003). To search for potential co-

regulators of given genes, a co-expression network was con-

structed. A partial correlation coefficient was used to measure

the tendency for co-expression (Figure 1a), which is expected

to reflect the direct relationship between genes (Kolpakov

et al., 1998). The network is of high quality, as demonstrated

by a permutation test (see Methods S1). This is a major

resource for construction of a co-expression/co-function net-

work. Furthermore, this co-expression network was parti-

tioned into 259 gene groups, forming the basis for further

gene module organization (Figure 1a).

© 2015 The Authors
The Plant Journal © 2015 John Wiley & Sons Ltd, The Plant Journal, (2015), 83, 359–374

360 Jiawei Wang et al.

http://rapdb.dna.affrc.go.jp/download/irgsp1.html
http://rice.plantbiology.msu.edu/
http://rice.plantbiology.msu.edu/
http://rapdb.dna.affrc.go.jp/


RNA-seq
92 samples

Microarray (PL2500)
1684 samples

GEO/DDBJ data 
collection

4774 differentially 
expressed gene sets

partial correlation 
coefficient 

5618 GO 
4846 InterPro

120 KEGG

Functional term 
collection

259 
co-expression gene

sets

GSEAExpression 
enrichment Co-regulator network

995 gene modules

Functional clusters

Function enrichment

gene FPKM in 
13 tissues

Gene module 
enrichment

Tissue expression
         profile

GWAS: 
43 agronomic traits 

related site lists and 
gene sets

Find target genes

Enriched functional modules

Gene set
User Input I

Transcriptomic data

Genomic sites

User Input II

User Input III

Most related studiesTissue specificity Co-regulators

Genomic sites annotation

SNP/INDEL

Length distribution

Gene feature distribution

Around TSS profile

Peak

Exonic variation 
annotation 

Differentially 
expressed genes

Tools

Biological 
questions

(a)

(b)

Figure 1. CARMO framework for data integration and web-based services.

(a) CARMO framework for systematic integration of gene function terms and multi-omics data from rice. The six diamond-shaped boxes represent data pro-

cessed and used in CARMO; red boxes represent web-based tools that CARMO provides. The green arrows represent the flow of information from omics data;

the yellow arrows indicate the flow of function term evidence.

(b) CARMO accepts gene lists, processed transcriptome data and genomic sites (regions or SNPs) as input. All corresponding tools (indicated by grey arrows for

gene lists and a blue arrow for transcriptome data) may be applied independently or jointly.
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Gene modules with concerted expression and related func-

tions. As gene annotation based solely on functional

homology is not sufficiently reliable, and one gene set only

partially reflects the biological function, we organized gene

sets of related function showing coordinated expression

into higher-level modules, such that one gene module rep-

resents a group of genes expressed in concert to perform a

specific function. In this way, the role of a gene with non-

validated function may be deduced from its neighbors in

the same module with relatively high confidence, as both

sequence homology and experimental evidence are taken

into account. We followed the method widely used in cancer

research as proposed by Segal et al. (2004), and identified

995 statistically significant gene modules, representing 995

gene groups with concerted expression and related function

(Figure 1a). Figure 2 shows a subset of the module map

comprising 830 modules and 289 typical biological compari-

sons in rice. It is clear that genes preferentially expressed in

callus and inflorescences are related to hormone activity

and cell division, while the major role of shoot- and leaf-

specific genes is photosynthesis, consistent with previous

reports (Huang and Yeoman, 1984; Evans, 1989).

Genomic sites and related gene sets associated with key

agronomic traits. Genomic sites and related genes associ-

ated with 43 rice traits (Table S1F) were collected from all

available rice GWAS data (Huang et al., 2010, 2012; Xu

et al., 2012) and integrated in CARMO. For any input study

or gene list, it will be apparent which genes participate in

regulation of key agronomic traits.

Functional exploration of gene lists: complementary

approaches for integration of multiple evidence

High-throughput experiments often result in a large gene

list of interest, possibly with thousands of genes. To eluci-

date the collective behavior of these genes and to identify

key regulators may greatly facilitate downstream experi-

ments. To address these issues, CARMO utilizes five com-

plementary web-based tools (red boxes in Figures 1a and

3a) to integrate evidence from both omics data and that

largely derived from homology comparison. Each tool has

its own strength and focus, in order to provide in-depth

data mining services for given gene lists. Figure 1(b)

shows the general function of each tool, which may be

applied individually or jointly. These tools are described

according to their applications, and detailed uses are illus-

trated by examples in later sections.

Search for the most-related differential expression studies

to the input gene list: expression enrichment analysis. For

any given gene list, CARMO could provide the most-related

pairwise transcriptomic comparisons, based on a statistical

test of whether their differentially expressed genes have

significant overlap with the input (Figure 3b). Details of

common genes affected are also listed. From these results,

users are shown which previously published treatments or

gene perturbations are most closely related to their own

study, and also the key genes involved. To further under-

stand the functions or pathways affected, CARMO provides

an option in the webpage of gene list annotation to submit

the gene list for functional annotation as described below.

Integrative annotation of gene lists with high confidence:

functional cluster and gene module enrichment. The tra-

ditional method of function enrichment analysis presents

a collection of enriched functional terms for a given gene

list, without description of the relationship among the

terms. CARMO provides two web-based tools for integra-

tive annotation of gene lists. The most intuitive way to

integrate the enriched functions is to organize all relevant

functional gene sets (sharing the same gene ontologies,

pathways and domains and over-represented in input gene

lists), into higher-level groups based on the number of

genes they share (Huang et al., 2009), as performed by the

functional cluster module in CARMO (Figure 3c–e). This

method helps to better elucidate the functions of the gene

list based on the highly organized gene functional clusters.

In addition, enrichment analyses for each individual source

of functional terms are performed.
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Figure 2. Matrix of modules (rows) versus array comparisons (columns).

Red and green indicate genes in the module that are induced or repressed.

Modules with similar expression behavior were organized into the same

cluster, and each cluster is separated by white lines.
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(a)

(b) (c) (f)

(e)

(d)

Figure 3. Input and output for integrative functional analysis of gene lists.

(a) Input and available analysis tools for gene list interpretation.

(b) Expression enrichment analysis uncovers the most-related transcriptomic studies to the input gene list. The enrichment score for each study is the geometric

mean (in -log scale) of P values characterizing the enrichment of samples in the study.

(c) Output and related visualization tools for the functional cluster module. The enrichment score for each cluster is the geometric mean (in -log scale) of P

values characterizing the enrichment of samples in the study.

(d) Heatmap showing the matrix of functional terms for each gene in the cluster. Each row represents a gene and each column represents a functional term.

(e) Network view of functional cluster enriched in input gene list.

(f) Visualization of a co-expression/co-function network.
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The other integrative method is the gene module enrich-

ment tool (Figure S1a), which calculates the enrichment of

input gene list in the pre-compiled gene modules in CARMO.

Each gene module represents a group of genes with con-

certed expression and related function. Given that genemod-

ules incorporate evidence from both functional studies and

omics data, annotation in thisway not only provides relatively

high confidence, but also helps to generate further hypothe-

ses from the given data, as illustrated by Example I below.

It should also be noted that, for each cluster or gene

module, CARMO also characterizes the functional terms

for each gene via a heatmap (Figure 3d and Figure S1a),

such that users may visualize the relationship between

multiple genes and multiple terms directly, and are able to

focus on potential key factors.

Visualization of co-regulators. Genes that show a high

correlation coefficient with given gene list are extracted

and presented in a network (Figure 3f). Each pair of co-

expressed genes is connected by an edge, which is high-

lighted in blue if they also share common functions (Fig-

ure 3f), indicating relatively strong evidence for co-

regulation between the pair of genes. The detailed func-

tional annotation, pathway and domain information for all

genes in the network are provided in the same web page

below the network. To facilitate exploration, CARMO pro-

vides multiple interactive tools for manipulation of the net-

work, and simultaneously highlights the genes selected

from either network or the table in both sources.

Visualization of expression profile across tissues. For any

given gene list, a heatmap of the expression profile across

tissues, and the hierarchical clustering result, both gene-

wise and tissue-wise, are presented in order to help deter-

mine the expression specificity of the genes of interest.

Interpretation of transcriptomic datasets

CARMO provides multiple tools for transcriptome compari-

son and annotation. Given a pair of transcriptomic datasets,

two complementary methods of interpretation are applied
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Figure 4. Input and output for transcriptomic data comparison between a pair of samples (a) and multiple samples (b).
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(Figure 4a). One involves detecting differentially expressed

genes followed by functional exploration of the gene list as

mentioned above; the other involves using GSEA (Subra-

manian et al., 2005) to search for pre-compiled gene sets

sharing the same functions, pathways or domains that are

preferentially enriched in up- or down-regulated genes. The

current version of CARMO contains four types of pre-com-

piled gene sets for GSEA, including differentially expressed

gene sets from pairwise comparison of transcriptome data-

sets, functional terms, domain information and pathways.

Related statistics including P value, q-value (false discovery

rate adjusted P value), fold change and enrichment score

are listed in the results table (Figure 4a). The major differ-

ence between these two methods is that the former identi-

fies enriched functional terms for up- and down-regulated

genes separately, while GSEA considers the relative enrich-

ment of gene sets between a pair of samples. Thus, the for-

mer method may recover gene sets that are enriched in

both induced and repressed genes, which may be undetect-

able using GSEA if the enrichment is comparable between

the up- and down-regulated gene lists. Users must take into

account the focus of each method when interpreting their

own data.

When the input contains multiple transcriptome samples

(Figure 4b), CARMO applies k-means clustering (Eisen

et al., 1998) to group genes into groups with distinct

expression profiles across samples. Genes in each cluster

may further be submitted for gene list annotation. For a

better understanding of the differences across samples, it

is recommended that genes with differential expression be

used as input.

Characterization of genomic and epigenomic datasets

For genomic datasets, CARMO accepts two types of

input: genomic regions generally derived from epigenom-

ic studies (Figure 5a), and SNPs or short insertions and

deletions (INDELs) from genome-wide re-sequencing

studies (Figure 5b). The results for former input are com-

posed of two parts: (i) statistics and genomic distribu-

tions (Figure 5c), and (ii) target gene detection and

annotation (Figure 5d). Notably, if a pair of region lists is

given, three lists will be provided based on region over-

lap, resulting in one common region list and two unique

region lists (Figure 5a). Next, common and unique target

genes are identified, and all the gene list annotation

methods mentioned above may be applied. For SNP or

INDEL input, CARMO reports affected gene regions, and

information for related genes. If the input is based on the

current release of the rice genome (IRGSP 1.0), synony-

mous or non-synonymous variations may be distin-

guished for SNPs occurring in exons (Figure 5b).

Furthermore, the function enrichment methods mentioned

above are available for annotation of genes affected (see

Example III).

Examples illustrating the power of CARMO for data

mining of various types of omics data in rice

Example I: gene module enrichment analysis revealed

close relationship between RNA helicase genes and DNA

methylation. To understand the functional effect of DNA

methylation, 98 genes grouped under GO terms (ID:

0006306) relevant for DNA methylation were used as input

for gene list annotation. Some well-documented functions

related to DNA methylation, including histone H3K9 meth-

ylation and cell proliferation, show up in the results for

both individual GO term enrichment analysis and gene

module enrichment, while only gene module enrichment

analysis recovered the DEAD/DEAH RNA helicase-related

genes significantly related to DNA methylation, with a P

value of 3.92E-05 and fold enrichment of 4.2 (Table 1 and

Table S2). In support of this finding, there is growing evi-

dence demonstrating the essential role of RNA helicases in

PIWI-interacting RNA-dependent DNA methylation, includ-

ing Tud domain-containing (TDRD) family (Chen et al.,

2011), mouse VASA homolog (MVH) (He et al., 2011), and

DExD-box helicase MOV10-like-1 (MOV10L1) (He et al.,

2011) in mammals, and SILENCING DEFECTIVE 3 (SDE3) in

Arabidopsis (Garcia et al., 2012). A recent report in rice

found that the otholog of DOMAINS rearranged methyl-

transferase2 (OsDRM2) interacts with the RNA helicase Os-

eIF4A (Dangwal et al., 2013), encoded by a gene that is

present in the RNA helicase module collected by CARMO

(Table S2). The genes in this module are thus good candi-

dates for further functional validation of the relationship

between RNA helicase and DNA methylation in rice.

Example II: analysis of multiple transcriptome datasets

reveals the interplay between plant hormones. To under-

stand the common and distinct effects of hormone

treatment in rice, we collected all samples from a hormone

treatment experiment (Garg et al., 2012) characterizing the

transcriptomic profile before and after addition of six

hormones, including indole-3-acetic acid (IAA), 6-
Benzylaminopurine (BAP, a synthetic cytokinin), abscisic

acid (ABA), ethylene, salicylic acid and jasmonic acid (JA).

Each of the six pairs of transcriptomic data (treated versus

untreated) were uploaded to CARMO to detect genes regu-

lated by various hormones. Next, k-means clustering

implemented in CARMO was used to cluster the expres-

sion change pattern across the samples treated by six hor-

mones, resulting in five classes (Figure S2). Figure 6(a)

shows the four classes whose genes are obviously influ-

enced by more than one hormone. Functional annotation

implemented in CARMO was used to explore the functions

of the five groups, and detailed functions and associated

genes for each group are listed in Table S3.

Class 1 represents genes induced by all six hormones,

with less response to BAP treatment and higher response
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to SA. The top enriched functional clusters (Figure 6b) and

pathways (Figure S3) for genes in class 1 are oxidation/

reduction and related enzymes, including glutathione S-

transferase and P450 (Table S3), both of which are critical

for catalyzing the oxidation of endogenous or exogenous

chemicals. Consistently, studies in Arabidopsis indicate

that glutathione S-transferase genes are induced by ethyl-

ene and salicylic acid (Xiang and Oliver, 1998; Sappl et al.,

2004; Yoshida et al., 2009). In another report, JA was

shown to induce accumulation of glutathione metabolic

(a) (b)

(c) (d)

Figure 5. Input and output for genomic sites analysis pipeline.

(a) CARMO accepts an individual peak list or a pair of peaks, the latter of which are classified as common or biased peaks based on peak overlap before further

annotation.

(b) Annotation results for SNPs and INDELs, including types of variant, and synonymous or non-synonymous exonic variant.

(c) Statistical results for the input peak list, including peak length distribution, gene feature distribution, and the distribution of the peak around the transcription

start site.

(d) Genes surrounding the input genomic sites are defined as targets based on an optional cut-off, and functional annotation analyses are automatically per-

formed.
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genes and enhance glutathione synthesizing capacity

(Xiang and Oliver, 1998). Opposite expression changes

were observed for genes in class 2 between the treatments

of ABA and JA, and class 4 between the treatments of ABA

and cytokinin (Figure 6a), representing antagonistic effects

of these particular hormones, consistent with previous

reports in Arabidopsis (Anderson et al., 2004; Tran et al.,

2007; Lu et al., 2014). The top enriched functional clusters

of class 4 mostly include histidine kinases, chemotaxis Y

protein (CheY), expansin and proteins involved in phos-

phorelay signal transduction (Table S3), all of which are

critical components of the multi-step two-component sys-

tem responsible for initiating cellular responses to environ-

mental stimuli (Stock et al., 2000). Similar results were

obtained when using GSEA to identify enriched functions

in genes induced by cytokinin (Figure 6c). Visual inspec-

tion of the co-regulator network of genes from class 4

identified the key factors involved in the cytokinin-respon-

sive two-component system, with the top two sub-

networks representing histidine kinases and expansins

(Figure 6d). Cytokinin dehydrogenase, BTB (for BR-C, ttk

and bab) protein involved in ubiquitination, and genes

related to phosphor-transferase are also present in these

two sub-networks, and are plausible candidates for further

investigation of the downstream events following cytoki-

nin-responsive signaling.

Example III: integrative analysis of DNase-seq and tran-

scriptomic datasets reveals a close relationship between

chromatin accessibility and tissue specificity. To illustrate

the use of CARMO for integrative analysis of genomic and

transcriptomic datasets, we compared data of DNaseI-
hyper-sensitive sites (DHSs) characterizing the chromatin

open state between callus and seedlings on a genome-

wide scale (Zhang et al., 2012). By exploring the different

functions of genes surrounding tissue specific DHSs, we

identified some interesting possibilities for further investi-

gation (Figure 7a).

In this example, CARMO accepts as input two bed files

describing the genomic coordinates of sequencing read-

enriched regions (DHS peaks) from callus and seedlings,

and gives three peak lists based on input peak overlap,

including callus-unique DHS, seedling-unique DHS and

common DHS, all of which show a high percentage around

the transcription start site (Figure S4). Accordingly, all peak

target genes are also divided into three lists, two biased

and one common. Next, expression enrichment tool was

used to identify the most-related transcriptome studies.

The transcriptome comparison between young leaf (refer

to as seedlings hereafter in this example) and growing cal-

lus was among the top enriched comparisons (Table S4),

whose stages of tissues (Fujita et al., 2010) were almost

the same as those in the DHS study, and was used for

downstream analysis. From the expression summary page

of CARMO (Figure 7b), we found that 494 genes preferen-

tially expressed in callus show higher levels of the open

chromatin state in callus as compared to seedlings, while

503 genes that showed higher levels of the open chromatin

state in seedlings displayed seedling-specific expression.

These two gene lists represent callus- or seedling-specific

genes that are directly regulated by their surrounding chro-

matin state, which is affected by transcription factor bind-

ing or epigenetic modification, and thus are among the key

regulators of tissue specificity.

To explore the function of these two gene lists, func-

tional annotation tools implemented in CARMO were used.

Various sets of homeobox genes are specifically enriched

in seedling-specific genes or callus-specific genes

(Table 2), representing key transcription factors controlling

tissue specificity. Members of the seedling-specific list par-

ticipate in photosynthesis, chloroplast morphogenesis and

sugar transport (Figure 7c and Table S4). In contrast, the

functions significantly enriched in the callus-specific gene

Table 1 Biological processes related to DNA methylation, ranked
by enrichment P value from low to high (details in Table S3)

Gene module P value Description

module_706 1.08E-117 DNA methylation
module_551 4.55E-73 Cell proliferation; histone H3K9

methylation
module_620 2.94E-48 Cell–cell signaling; virus-induced gene

silencing; vegetative phase change;
production of tasiRNAs involved in
RNA interference

module_704 1.56E-40 Regulation of flower development;
histone lysine methylation

module_550 2.91E-26 Epigenetic regulation of gene
expression; histone binding;
chromatin modification

module_737 1.26E-19 Histone phosphorylation; spindle
assembly

module_568 2.81E-18 DNA repair; mitotic cell cycle;
nucleotide excision repair

module_751 1.71E-13 Double-strand break repair via
homologous recombination

module_774 3.00E-08 DNA endo-reduplication
module_640 7.02E-08 DNA-dependent ATPase activity;

nucleolus organization
module_917 9.04E-07 Exonuclease activity; production of

siRNAs involved in RNA interference;
mitotic recombination

module_545 2.60E-05 Response to c radiation; regulation of
telomere maintenance; meiotic DNA
double-strand break formation;
telomere maintenance in response to
DNA damage

module_676 3.92E-05 Nucleic acid binding; post-
translational protein modification;
ATP-dependent helicase activity;
DEAD/DEAH box DNA/RNA helicase;
N-terminal DEAD-like helicase
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set include regulation of the cell cycle and transcription,

which is expected as cell division and transcription are

highly active in callus tissues (Meins and Thomas, 2003). It

is interesting that genes associated with peroxidase are

also significantly over-represented among callus-specific

genes (Figure 7d and Table S4). It has been demonstrated

that the redox state is essential for organogenesis of plant

callus (Bonfill et al., 2003). Similarly, in animals, redox

homeostasis regulated by peroxidase is important in regu-

lation of self-renewal and differentiation of stem cells

(Hochmuth et al., 2011; Wang et al., 2013). No specific per-

oxidase has been reported to be involved in regulation of

plant callus regeneration, and the peroxidases that are

preferentially expressed in callus and are regulated by a

surrounding open chromatin state represent good candi-

dates for further study of redox regulation in plant callus.

Example IV: genes affected by yield-associated SNPs are

preferentially expressed in panicles and involved in kinase-

related processes. We collected yield-related GWAS

results, including grain weight, panicle number and seed

number per panicle, and obtained 60 SNPs/INDELs associ-

ated with rice yield (Huang et al., 2010, 2012; Zhao et al.,

2011), which were further used as the input into the geno-

mic annotation module. Genes affected by these SNPs/IN-

DELs, gene feature distribution, and synonymous or non-

synonymous variations are listed in Table S5. Function

annotation modules in CARMO revealed that kinases are

significantly over-represented in the gene list (Table 3),

including receptor-like cytoplasmic kinases, cyclins control-

ling cell proliferation, lectin protein kinases and phosphati-

dylinositol 3-kinase-related kinase (PIKK), all of which are

essential regulators of rice seed development (Fabian-

Marwedel et al., 2002; Gamuyao et al., 2012; Liu et al.,

2012; Cheng et al., 2013; Ramegowda et al., 2014). The

expression profile of the input gene list across tissues

reveals that those genes are preferentially expressed in

panicles and reproductive tissues (Figure 8), supporting

the genetic evidence from GWAS that they are actively

involved in control of rice yield.

Web-based integrative services

To make the platform easy to use, we packaged various

analysis procedures for various data types into an auto-

(a) (b)

(c) (d)

Figure 6. Interplay of plant hormones at the transcriptomic level.

(a) Four classes of genes affected by at least two hormones All five classes of hormone response genes are shown in Figure S2.

(b) Functional cluster of genes in class 1.

(c) GSEA result showing enrichment of the expansin gene set in BAP-induced genes.

(d) Co-expression co-function network of genes in class 4. Red nodes represent genes in the input list; blue edges connect pairs of genes with co-expression

and shared functions; the genes in the two are mostly histidine kinases and expansins, except those indicated by arrows.
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Callus unique peaks

Common peaks

Seedling unique peaks

Peak annotation

Target gene 
definition

Target genes

Expression enrichment

Seedling unique targets enriched 
in gene sets with seedling specific expression 

Callus unique targets enriched 
in gene sets with callus specific expression

Homeobox protein transcription factors

Peroxidase, calcium binding

Response to auxin, DNA-binding
Glycoside hydrolase 

Actin binding and cell wall

LRR receptor-like kinase
Response to karrikin

Cell cycle, DNA replication

(a)

(b)

(c)

(d)

Figure 7. Integrative comparison of tissue-specific DHS and transcriptomic data.

(a) Two bed files listing coordinates of callus DHS and seedlings DHS are submitted to CARMO, and the following pipeline is automatically deployed: divide the

two inputs to common and unique peak files, summarize peak statistics, detect common and unique target genes, and perform integrative functional analyses

for each gene list.

(b) Layout of the expression enrichment result, which identified gene sets with tissue-specific expression enriched in tissue-specific DHS targets.

(c) Cluster view of enriched functions of callus-specific targets also showing callus-specific expression.

(d) Cluster view of enriched functions of seedling-specific targets also showing seedling-specific expression.
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matic pipeline. Only one input file is required, and all rele-

vant results, including the statistic information, genes

affected, related functions and comparison with previously

published studies, are well-organized (Figure 1b).

It should also be noted that, to make images user-

friendly and interactive, we present figures using d3.js,

which is a widely used JavaScript library for web data

visualization. Importantly, with d3.js, we are able to draw

interactive graphs with high resolution in the browser. Co-

expression networks, functional networks, heatmaps and

bar graphs illustrating P values were dynamically gener-

ated by d3.js, and these images may be manipulated inter-

actively (Figure 3 and Figure S1), including zooming in and

out, moving within the image, highlighting and so forth.

Additionally, the images may be conveniently downloaded

in publishable high-quality format.

Table 2 Homeobox genes specifically expressed in seedling (12 genes) or callus (five genes) that are regulated by the open state of the sur-
rounding chromatin

Gene Annotation

Seedling LOC_Os10 g39030 Os10 g0534900 Homeobox domain-containing protein
LOC_Os01 g74020 Os01 g0971800 MYB family transcription factor
LOC_Os03 g47740 Os03 g0680800 Homeodomain protein
LOC_Os03 g20900 Os03 g0325500 MYB transcription factor
LOC_Os07 g30130 Os07 g0484700 MYB family transcription factor
LOC_Os10 g01470 Os10 g0103700 Homeobox-associated leucine zipper
LOC_Os08 g19650 Os08 g0292900 Homeobox protein knotted-1
LOC_Os05 g35500 Os05 g0429900 MYB family transcription factor
LOC_Os03 g52239 Os03 g0732100 Homeobox domain-containing protein
LOC_Os12 g06340 Os12 g0160500 BEL1-like homeodomain transcription factor
LOC_Os01 g44390 Os01 g0635200 MYB family transcription factor
LOC_Os06 g24070 Os06 g0348800 MYB-like DNA-binding domain-containing protein

Callus LOC_Os03 g10210 Os03 g0198600 Homeobox domain-containing protein
LOC_Os07 g39320 Os07 g0581700 Homeobox domain-containing protein
LOC_Os01 g62310 Os01 g0840300 Homeobox domain-containing protein
LOC_Os01 g63510 Os01 g0854500 Homeobox domain-containing protein
LOC_Os07 g48560 Os07 g0684900 Homeobox domain-containing protein

Table 3 Nine yield-associated genes from GWAS involved in
kinase-related processes

Gene Annotation

LOC_Os02 g43550 Os02 g0652000 Cyclin
LOC_Os02 g48360 Os02 g0714200 Pyrophosphate-fructose

6-phosphate
1-phosphotransferase
subunit a

LOC_Os03 g27990 Os03 g0397700 Strubbelig receptor
family 7 precursor

LOC_Os03 g30130 Os03 g0415200 Phospholipase C
LOC_Os05 g09500 Os05 g0187100 Hexokinase
LOC_Os06 g29810 Os06 g0494100 Lectin protein kinase family

protein
LOC_Os08 g38200 Os08 g0489800 Phosphatidylinositol 3- and

4-kinase family protein
LOC_Os09 g37890 Os09 g0551500 Serine/threonine protein

kinase receptor precursor
LOC_Os12 g41180 Os12 g0604700 LSTK-1-like kinase

Pos
t-e

merg
en

ce
 in

flo
r

Pre-
em

erg
en

ce
 in

flo
r

Anth
er

Pist
il
Embry

o-2
5D

AP

End
os

pe
rm

-25
DAP

Le
av

es
-20

 da
ys

See
d-5

DAP

Pan
icle

Sho
ots

See
dli

ng
 4-

lea
f s

tag
e

Roo
t ti

p 2
DAP

Roo
t ti

p 6
DAP

Vas
cu

lar
 ce

ll-7
DAI

Vas
cu

lar
 ce

ll-1
4D

AI

0 6
log2(FPKM)

Figure 8. Heatmap showing the expression profile of yield-related genes

across tissues.
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DISCUSSION

CARMO is a web-based platform for intensive functional

exploration of rice omics data, whose power lies in the com-

prehensive collection and integration of information from

both multi-omics data and diverse functional evidence from

rice, which is further organized into gene sets and higher-

level gene modules. It has four major features. The first is

the ability to search for the gene lists derived from 1819

published rice omics samples that have significant overlap

with input gene list. Second, 15 401 functional gene sets

covering 49 469 genes are integrated from various sources,

and, for any given gene list, all enriched functional gene

sets are organized into clusters or modules, which help to

elucidate the role of a given gene list on the level of gene

functional unit. Third, it provides the first annotation plat-

form for multi-omics rice data, and may be applied for inter-

pretation of datasets characterizing transcriptome or

genomic sites under comparison, open chromatin, epige-

netic modifications, and genomic re-sequencing results.

Fourth, use of various interactive visualization tools, includ-

ing networks of co-regulators, cluster views of functional

groups and heatmaps of genes in functional clusters or

modules, make CARMO a user-friendly exploration plat-

form.

We demonstrated the performance of CARMO on multi-

ple transcriptomic and genomic datasets, and found that

CARMO not only reproduced evidence previously reported,

but also proposed useful functional insights for further

experimental exploration, suggesting that CARMO is an

invaluable resource for extracting biological insight from

rice omics data.

With the accelerated accumulation of multi-omics data,

it is of particular importance to keep data updated fre-

quently. Here we developed semi-automatic pipeline from

data downloading to result processing, which make it

easy to keep the database updated, as well as to extend

it to other species as required. The omics data used in

the current version of CARMO are mainly from transcrip-

tome studies, which are the predominant type of public

rice omics data. However, with the rapid generation of

other types of omics data in the future, CARMO may

expand accordingly, especially to include epigenomic

data characterizing the binding profile of transcription fac-

tors and epigenetic modifications, which are important

for elucidation of regulatory networks. Meanwhile, more

bioinformatics tools for intensive analysis of (epi)genom-

ics data will be incorporated into CARMO, including tools

for quantitative comparison of epigenomic data from vari-

ous samples, and for detection of transcription factor

binding motifs as developed previously (Shao et al.,

2012). Taken together, CARMO aims at systematic organi-

zation of evidence from diverse sources, to provide com-

prehensive and reliable interpretation for multi-omics

data in rice, and thereby help to facilitate subsequent

hypothesis-driven research.

EXPERIMENTAL PROCEDURES

Data collection

Rice microarray data are retrieved from Gene Expression Omnibus
(GEO, http://www.ncbi.nlm.nih.gov/geo/), including 111 Affymetrix
microarray experiments (GEO Series, GSE) under GEO Platform
(GPL) 2025, with 1684 microarray samples (GEO SOFT format
Sample, GSM) in total (Edgar et al., 2002) (Table S1). For each
experiment, all potential pairwise comparisons were performed,
resulting in 2712 comparisons. All eight RNA-seq experiments per-
formed in Nipponbare (Oryza sativa L. ssp. japonica), including 92
samples and 267 comparisons, were collected from the DDBJ
database (Ogasawara et al., 2013). A total of 4846 GO terms were
integrated from the Affymetrix rice annotation (http://www.af-
fymetrix.com), Michigan State University’s Rice Genome Annota-
tion Project (Kawahara et al., 2013) and Gramene (Ware et al.,
2002), the last of which is mainly based on information from the
RAP-DB (http://rapdb.dna.affrc.go.jp/). We also incorporated 120
rice pathways from the KEGG database (Kanehisa and Goto, 2000)
and 5618 domains from the EMBL InterPro database (Hunter et al.,
2012).

Pre-processing of RNA-seq data

We started by cleaning the sequencing reads, including removing
bases with a low quality score (<20) and irregular GC content, cut-
ting out sequencing adaptors and filtering short reads. Then
TopHat (Trapnell et al., 2009) was used to map the read to genomic
regions, followed by counting the number of reads in each gene.

Preparation of gene lists with differential expression

For detection of differentially expressed genes, the Bioconductor
package limma (Smyth, 2004, 2005; Ritchie et al., 2015) was used
for microarray data, and DESeq (Anders and Huber, 2010) was
used for RNA-seq data. Differentially expressed genes for micro-
array sample comparison were defined based on the following cri-
teria: |log2 (fold change)| >3, q-value <0.001. For RNA-seq data,
which are expected to be more sensitive with respect to detecting
differential expression, the combined criteria of |log2 (fold
change)| >1 and q-value <0.05 was used. Finally, gene lists with
gene number <14 were excluded for further analysis, resulting in
4589 gene sets in total.

Detection of genes with tissue-specific expression

We performed statistical tests to detect tissue-specific expression
based on the method proposed by Ge et al. (2005). Twenty-seven
RNA-seq samples from 13 tissues were collected (Table S1E). Cuff-
links (Trapnell et al., 2012) was used to quantify gene expression
levels (fragments per kilobase of exon per million fragments
mapped, FPKM). For each gene, the mean FPKM of samples from
the same tissue is recorded. Tissue-specific genes are defined
based on the combined criteria: (i) the FPKM is more than three
standard deviations above the FPKM in the remaining tissues, (ii)
the ratio between the FPKM of the tissue-specific gene and that of
the second most highly expressed gene is >2, and (iii) the FPKM is
>5.

In addition to genes specifically expressed in one tissue, we
also defined genes that are highly expressed in two or three
tissues as tissue-specific genes as proposed by Ge et al. (2005). In
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the heatmap online showing the expression intensity of input
genes across tissues, tissue-specific expression is highlighted by a
blue box.

Construction of co-expression networks based on partial

correlation coefficient

For all 57 381 probes on the Affymetrix platform (GPL2025 in GEO),
we first removed probes representing multiple genes, and filtered
redundant probes corresponding to the same gene, such that only
the probe with highest mean intensity across all samples was
retained, resulting in 18 212 probes. Next, sample pairs without
large differences were removed, such that only comparisons with
more than 100 differentially expressed probes (|log2 (fold change)|
>1 and q-value <0.001) were retained, leading to 2185 sample pairs.

GeneNet (Schafer and Strimmer, 2005) was used to construct
co-expression networks of genes based on partial correlation of
the expression ratio (Figure 1a). We used the method proposed
by Ma et al. (2007), using an iterative process with 1000 iterations
for calculation of partial correlation. In each iteration, a partial cor-
relation coefficient was calculated among 2000 genes that were
randomly chosen from the total genes. The ultimate partial corre-
lation coefficient of each gene pair was the minimum value over
1000 cycles of calculation. We tested the accuracy of the network
by determining whether genes with a high correlation coefficient
participate in the same KEGG pathways. Using a partial correla-
tion coefficient >0.01 as the cut-off, 5708 gene pairs were
obtained, among which 254 pairs of genes shared the same KEGG
pathway, which is significantly higher than in random permuta-
tions (Figure S5). Specifically, we randomly permutated the genes
in the KEGG gene lists (repeated 1000 times). For each iteration,
5708 gene pairs are randomly selected from all annotated rice
genes, and the number of pairs in the same KEGG pathway is
recorded. None of the 1000 random result is higher than 254, thus
the permutation P value is smaller than 1E-3 (Figure S5).

Construction of gene modules

Our gene module construction method was a modified version of
Segal’s procedure (Segal et al., 2004). We first collected all 10 584
gene sets from GO, KEGG and InterPro, as well as 259 gene sets
showing co-expression based on partition of the co-expression
network via the MCL algorithm (Enright et al., 2002). Next, differ-
entially expressed genes sets were defined based on the criteria |
log2 (fold change)| >2 and q-value <0.01. All functional gene sets
with similar expression behavior were clustered based on whether
a significant proportion of the genes in the set showed a consis-
tent expression change (either up- or down-regulated) across
arrays (Figure 2). After removing genes with no coordinated
expression with the gene set they belong to, and further removal
of modules with a false discovery rate <0.05, in ‘leave one out’
cross-validation (Segal et al., 2004), we finally obtained 995 gene
modules containing 20 476 genes. For each module, we manually
removed redundant descriptions.

Functional classification based on the network clustering

method

To obtain an input gene list, the EASE score (a modified Fisher
exact test) (Huang et al., 2009) was used to detect enriched gene
sets sharing the same features. The EASE score was used to make
the detection more conservative with fewer enriched gene sets, as
the canonical Fisher exact test is too sensitive. For example, when
the size of a pre-compiled gene set is small, the canonical Fisher
exact test usually shows significant enrichment, even if only a few

genes in the input gene list are present in the gene set, possibly
due to random effect.

Next, all enriched functions were clustered such that related func-
tional terms are organized into the same cluster. Such a simplified
approach allows users to quickly obtain an overview of the functions
of the input genes (Huang et al., 2009). Briefly, a functional network
is organized such that each node represents a functional term, and
the edge between nodes represents a connection between two func-
tional terms sharing at least three genes. Then, the MCL algorithm
was applied to divide the network graph based on the bootstrapping
method. The results are presented in a user-friendly interactive
interface via an in-house script using d3 JavaScript library.

GSEA data preparation

GSEA-R (Subramanian et al., 2005), the R implementation of
GSEA, with minor modifications was used for data mining from
pairwise comparison of transcriptomic datasets. The purpose of
GSEA is to test whether given gene sets are enriched in up- or
down-regulated genes from pairwise comparisons. In addition,
the rank may be taken into account by proper choice of the scor-
ing metric (Subramanian et al., 2005).

Characterization of genomic sites: statistics, distribution,

target gene definition and function enrichment analyses

For each set of genomic regions, statistics including length, den-
sity around the transcription start site, and distribution in relation
to gene annotation are provided. If two regions are uploaded, a
common region list and two unique region lists are given based
on whether the two input lists have overlap with each other. Tar-
get genes are defined as the nearest genes to the given genomic
sites. For input list of SNPs/INDELs based on the current release
of rice genome (IRGSP 1.0), ANNOVAR (Wang et al., 2010) was
applied to determine whether the mutation sites are synonymous
substitutions or non-synonymous substitutions. The codon frame
information in the RAP-DB (Sakai et al., 2013) was used. For previ-
ous releases, no codon frame information is available, and only
genes affected are listed without describing the substitution type
of SNPs/INDELs in exons. Functional analyses modules are auto-
matically executed for functional interpretation of target genes.

Web server implementation

CARMO was designed as a relational database using a typical
LAMP (Linux, Apache, MySQL and PHP) platform aided by Java-
Script. An overview of the scheme underlying CARMO is shown in
Figure 1(b). The in-house scripts for data processing were written
in Python, and are available upon request.
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Figure S1. Output for functional annotation tools in addition to
those shown in Figure 3.
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Figure S2. Five groups of hormone response genes were identified
via k-means clustering. The fifth group representing genes specifi-
cally regulated by ABA is not shown in Figure 6.

Figure S3. CARMO allows visualization of genes in enriched path-
ways.

Figure S4. Statistics for DHS peaks.

Figure S5. The distribution of random permutation results.

Table S1. Detailed information on datasets used in this study.

Table S2. Gene modules enriched in genes relevant for DNA
methylation.

Table S3. Functional clusters and separate terms enriched in each
of the five classes of hormone-responsive genes shown in Fig-
ure S2.

Table S4. Gene list annotation result for callus-/seedling-specific
DHS targets.

Table S5. Annotation for yield-related SNPs.

Methods S1. Calculation of the percentage of rice GO annotations
with deduced functions instead of from direct experimental
evidence.
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